В организме человека полуподвижно соединяются кости позвоночника

Опорно-двигательный аппарат занимает ведущее место в жизнедеятельности человека, играя при этом важнейшую роль. Но не все знают, как он устроен, чем может грозить на первый взгляд его незначительное повреждение. Кроме этого, существуют разновидности, так называемые типы соединения костей, которые дают понять человеку, какая опасность для той или иной части организма будет самой значительной. Полуподвижное соединение костей обеспечивает нормальную подвижность позвоночника, что является одной из важнейших особенностей человеческого организма.

Какие существуют типы

Есть несколько типов соединения костей. Два из них являются основными и носят название «непрерывный и прерывный тип соединения костей», каждый из них в свою очередь имеет классификацию. А также выделяют третий тип, так называемый промежуточный.

пусто

Если говорить о непрерывном типе, то такой тип соединения есть у низших позвоночных, а также у высших, но на эмбриональной стадии. У высших позвоночных при формировании закладки костей сохраняется исходный материал, который в данном случае представлен хрящами и соединительной тканью. Этот самый исходный материал и позволяет в дальнейшем сформировать непрерывные соединения.

Прерывные считаются более совершенными. Обычно они развиваются на поздних стадиях онтогенеза у наземных позвоночных. Они дают организму более развитую подвижность. Развитие их начинается с возникновения щели, которая сохраняется между костями, затем хрящ покрывает сочленяющие поверхности костей.

Промежуточный тип иначе называют полусуставом. Несмотря на то, что кости соединяются хрящом, суставная капсула при этом отсутствует. Такой тип соединения лучше всего продемонстрирован между лонными костями таза.

Симфиз

Полуподвижные соединения костей по-другому называют «симфизом». Симфиз представляет собой своеобразное переходное состояние между костями скелета человека. И в отличие от других типов соединения костей, это либо хрящевое, либо фиброзное соединение. Внутри такого соединения располагается достаточно узкая щелевидная полость.

В отличие от сустава, который имеет капсулу, при полуподвижном соединении костей её не существует. Из-за своей хрупкости, поскольку состоит симфиз буквально из хряща, усиливаться соединение может межкостными связками.

Полусустав человека

С возрастом они не становятся более прочными и не превращаются в обычную костную ткань, сохраняя свой вид в процессе всей жизнедеятельности человека.

Примеры симфизов

Из-за своей особенности симфизы встречаются в человеческом организме далеко не везде, имеют определенное месторасположение как неподвижные и подвижные соединения костей.

Самые известные примеры полуподвижного соединения костей находятся в таких местах, как:

  • между костями черепа;
  • лонное сочленение;
  • между двумя половинами нижней челюсти;
  • в области позвоночника, между позвонками, так называемые межпозвоночные диски;
  • крестцово-копчиковое соединение;
  • между рукояткой и телом грудины.

Крестцово-копчиковое соединение

В организме человека, а именно в его опорно-двигательном аппарате, очень важным является позвоночник. Именно позвоночник демонстрирует яркий пример того, что собой представляют полуподвижные соединения костей.

Соединение костей в районе крестца

Если рассматривать область крестца и его соединение копчиковым позвонком, то оно, помимо симфиза в чистом виде, соединяется также с помощью связок. Таким образом, происходит его значительное смещение. У женщин это происходит естественным образом при родах, амплитуда такой подвижности может достигать 2 см.

Как отличить от других типов соединения костей

В организме человека есть несколько типов соединения костей, все они обеспечивают ему нормальную жизнедеятельность, хотя и образуются по-разному и имеют разные функции. Из-за своей похожести многие из нас путают в организме человека подвижные и полуподвижные соединения костей. Если неподвижные отличить достаточно просто, то с остальными возникает недопонимание.

Подвижные соединения называют суставами и у таких соединений есть несколько особенностей, которые позволяют их отличать от симфизов и наоборот.

Суставы дают возможность организму человека осуществлять движения в различных направлениях. С их помощью человек может сгибать руки и ноги, работать пальцами и совершать подобные действия. Симфизы тоже дают подвижность человеческому организму, но она выражается не так ярко. Необходимо несколько симфизов, чтобы позвоночник немного согнулся, суставы же позволяют сгибать руку «пополам» при их меньшем количестве.

Суставы имеют так называемую капсулу, симфизы же такой не имеют. Но как и в первом, так и во втором случае соединение имеет хрящ, который находится между костями и с помощью которого осуществляется безболезненная подвижность организма.

Каждому из этих типов характерно то, что при повреждении человек будет испытывать серьезные боли и будет ограничен в движении. Если повреждены суставы, то боль будет сильно сказываться при движении, если же повреждаются межпозвоночные диски, то есть вероятность того, что будут задеты нервы и боль может распространяться не только на поврежденную область позвоночника.

Источник

Подвижные соединения – суставы.

Полуподвижные соединения характерны для позвонков шейного, грудного и поясничного отделов позвоночника, для соединения ребер с грудиной и грудными позвонками.

Неподвижные соединения характерны для мозгового отдела черепа, когда выступы одной кости заходят в выемки другой. Образуется очень прочный шов.

По другой классификации соединения делят на две основные группы: непрерывные и прерывистые.

Непрерывные могут быть трех видов:

– Соединение с помощью соединительной ткани — фиброзное соединение (роднички в черепе новорожденного);

– С помощью хрящевой ткани (межпозвоночные диски);

– Костные сращения (кости черепа).

В прерывистых (суставах) различают суставные поверхности, суставную сумку, суставную полость с синовиальной жидкостью. Давление в них отрицательное. Различают еще и полусуставы — соединения, имеющие в толще хряща щелевидную полость (лобковое сращение).

Суставы различают по числу и форме суставных поверхностей костей и по возможному объему движений, т.е. по числу осей, вокруг которых может совершаться движение. Так, по числу поверхностей суставы подразделяют на простые (две суставные поверхности) и сложные (более двух). По форме – на плоские (межзапястные, запястно-пястные, предплюсно-плюсневые суставы), шаровидные (плечевой, тазобедренный), эллипсовидные (между затылочной костью и первым шейным позвонком) и т.д.

По характеру подвижности различают одноосные (с одной осью вращения – блоковидные, например, межфаланговые суставы пальцев), двуосные (с двумя осями – эллипсовидные) и трехосные (шаровидные) суставы.

17. Возрастные особенности скелета.

Позвоночник.

Процесс окостенения позвоночною столба происходит в строго определенном порядке: ядра окостенения сначала появляются в грудных позвонках (уже на 2 месяце внутриутробного развития), и затем окостенение распространяется по направлению к шейному отделу и копчиковому. Первая волна усиленного роста происходит от рождения до 2 лет, затем рост немного замедляется, затем в возрасте 7-9 лет начинается вторая волна усиления роста, третья волна приходится на период полового созревания.

Позвоночник новорожденного открыт сзади по линии всех дуг позвонков. К 7 годам дуги закрываются. Полное срастание отростков позвонков с телом позвонков осуществляется в возрасте 18-24 лет.

Физиологические изгибы позвоночника появляются: шейный лордоз – 2,5-3 месяца, грудной кифоз – в 6 месяцев, с момента первых шагов -9-10 месяцев – поясничный лордоз и крестцовый кифоз. Сначала изгибы не фиксированы и исчезают при расслаблении мускулатуры. Фиксация изгибов в шейном и грудном отделах происходит в 6-7 лет, а в поясничном – к 12 годам.

Грудная клетка у ребенка имеет коническую форму — сжата с боков. У взрослого преобладает поперечный размер грудной клетки. Форму взрослого грудная клетка приобретает к 12-13 годам.

Грудина начинает окостеневать на 2 месяце внутриутробного развития, окончательное окостенение приходится на 25 лет.

Окостенение ребер начинается на 6-8 неделе внутриутробного развития, затем в 8-11 лет появляются вторичные ядра окостенения. Слияние костных частей ребра происходит в 18-19 лет, а головки и тела ребра – в 20-25 лет.

Скелет конечностей начинает окостеневать на 2-3 месяце внутриутробного развития. Ключица – проходит только первую и третью стадии развития: процесс начинается на 6-ой неделе внутриутробного периода и к моменту рождения ключица полностью костная за исключением грудинного конца.

Лопаткаполностью окостеневает к 16-18 годам.

Кости запястья и предплюсны становятся оформленными только к 7 годам, окостеневают к 12.

Окостенение фаланг пальцев заканчивается к 11 годам.

У мальчиков ноги растут быстрее, чем у девочек.

Ядра окостенения костей таза появляются в период от 3,5 до 4,5 месяцев утробного периода. Срастание всех трех костей таза происходит в 14-16 лет, а окончательное окостенение приходится на 25 лет. Половые различия формы таза появляются после 9 лет.

Череп начинает дифференцироваться на 2-ом месяце внутриутробной жизни. К моменту рождения ядра окостенения имеются во всех костях черепа, но их срастание происходит в постнатальный период.

Различают три периода развития черепа после рождения: 1- период роста преимущественно в высоту (от рождения до 7 лет); 2-период относительного покоя (от 7 до 14 лет); 3- период роста преимущественно лицевого черепа (от 14 до окончания роста скелета – 20-25 лет). Висцеральный (лицевой) череп у ребенка относительно мал (недоразвиты челюсти), составляет 1/8 часть мозгового (у взрослого Vi). Лобная и клиновидные пазухи отсутствуют, верхнечелюстная (гайморова) – имеет вид горошины.

У новорожденного швы (непрерывное соединение костей черепа) имеют вид соединительнотканной прослойки, которая окостеневает после 30 лет. Углы костей черепа к моменту рождения также хрящевые. Между ними существует пространства, заполненные соединительной тканью. Эти участки называют родничками. Всего их шесть: лобный – самый большой (от 2,5 до 5 см) – располагается между лобной и теменными костями, зарастает на втором году жизни; затылочный располагается между теменными и затылочной костями, имеет размер до 1 см и зарастает на 2-3 месяце после рождения; клиновидные (пара) и сосцевидные (пара) роднички зарастают либо во внутриутробном периоде развития, либо сразу после рождения. Первые располагаются между лобной, теменной и височной костями, вторые – между затылочной и височной костями.

Читайте также:

Рекомендуемые страницы:

©2015-2020 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-20
Нарушение авторских прав и Нарушение персональных данных

Источник

Какие кости у человека соединяются полуподвижно. Соединение костей: неподвижные, полуподвижные, суставы

    Неподвижные (непрерывные)

    соединения происходит путем их срастания, характеризуется ограниченностью размахов движений и сравнительно небольшой подвижностью или отсутствием ее. В зависимости от характера ткани, которая соединяет кости, непрерывные соединения делятся на три вида: синдесмозы – соединение костей соединительной тканью (связки, соединяющиеся кости друг с другом, мембраны, швы), синхондрозы – соединение костей хрящевой тканью (которая может быть 2-х видов: гиалиновый и волокнистый хрящ) и синостозы – соединение костей при помощи костной ткани, это результат сращения ранее обособленных друг от друга костей или их частей (сращение диафиза с эпифизами у взрослого и образование длинной кости).

    Полуподвижные (полусуставы)

    – это переходная форма соединений между непрерывными и прерывными. В полусуставах между костями располагается хрящевая ткань, в толще которой имеется полость, не нет суставной капсулы и суставных поверхностей, покрытых хрящом (лонное сочленение, соединения крестца с телом 1 копчикового позвонка).

    Подвижные соединения костей

    встречаются чаще, они обеспечиваются истинными суставами. Сочленяющиеся концы костей покрыты гиалиновым хрящом толщиной 0,2-0,6 мм. Этот хрящ эластичен, имеет гладкую блестящую поверхность. Что значительно уменьшает трение между костями и тем самым облегчает их движение. Область сочленения костей окружена суставной сумкой (капсулой) из очень плотной соединительной ткани. Наружный, фиброзный слой капсулы крепкий и прочно соединяет между собой сочленяющиеся кости. Внутренний слой капсулы покрыт синовиальной оболочкой, выстилающей полость сустава. Синовиальная жидкость, находящаяся в полости сустава, действует как смазка и также способствует уменьшению трения. Снаружи сустав укреплен связками, состоящими из плотной соединительной ткани.

Желудочный сок начинает выделяться при. Причины и формы

Повышение количества желудочного сока в желудке может зависеть от двух моментов: либо желудок на самом деле выделяет в силу тех или иных причин слишком много секрета, либо железы выделяют нормальные количества жидкости, но она застаивается вследствие механических затруднений для ее оттока, либо, наконец, комбинируются оба момента, – имеется одновременно как увеличение самой секреции, так и застой в желудке. Во всех этих трех вариантах, однако, повышение содержания в желудке желудочного сока всегда является патологическим фактом.

Гиперсекреция может быть обнаружена путем определения содержания жидких составных частей натощак или после пробного завтрака. Практически наличие в желудке натощак более 50 см куб. жидкости говорит о патологическом увеличении секреции. При исследовании после пробного завтрака количество жидких частей, превышающее 50% объема содержимого после его отстаивания, говорит о гиперсекреции. Еще лучше определяется гиперсекреция при исследовании тонким зондом, когда каждый раз при аспирации добывается больше 15 см куб. и когда само выделение сока продолжается значительно больше, чем пищевое раздражение.

Гиперсекрецию можно определить также и рентгеноскопией, – здесь она проявляется наличием чрезмерно большого и широкого пояса сероватой тени, располагающейся выше контрастной массы, между ней и воздушным пузырем, так называемым интермедиарным слоем.

Отмечают три формы повышения секреции желудочного сока – гастросуккорею, периодическую гиперсекрецию и алиментарную гиперсекрецию.

Первая форма – гастросуккорея или синдром Рейхмана – представляет собой типичную клиническую картину; она состоит в том, что у больного каждую ночь появляются более или менее жестокие боли, усиливающиеся к утру, сопровождающиеся изжогой с чувством жажды; утром появляется обыкновенно приступ жестокой рвоты, очень жидкой, зеленоватого цвета, чрезвычайно кислой на вкус; рвота облегчает на время страдания больного. Если не наступило рвоты, то введением в желудок зонда натощак легко обнаружить в нем значительные количества зеленоватой жидкости, обычно с большим количеством свободной соляной кислоты и с более или менее повышенной общей кислотностью. Рентгеноскопически легко обнаружить явления расширения желудка чаще всего с ясными симптомами сужения привратника.

Вторая форма гиперсекреции – периодическая гиперсекреция, представляет более редкую форму повышенного выделения желудочного сока. Сюда относятся случаи, где без всякой видимой причины, периодически, появляются приступы жестокой, неудержимой рвоты, обычно кислого и очень жидкого содержимого. Эти приступы рвоты сопровождаются то мучительным чувством жжения и спазмами в подложечной области, то жестокой головной болью, то чувством общей разбитости и слабости, приближающейся к коллапсу. Продолжительность этих припадков различна, от суток до 2-3 дней. Характерно, что лечение не может купировать приступов рвоты, но она иногда так же быстро исчезает, как появилась, с тем, чтобы через неопределенный промежуток времени и опять без всяких предвестников и без всякой видимой причины появиться вновь. Также данная форма гиперсекреции может возникать у больных с поражениями ЦНС. Периодическая рвота у этих больных является выражением типических желудочных приступов в результате специфического поражения нервной системы.

Соединение частей скелета обеспечивают. Опорно-двигательная система

Опорно-двигательная система относится к исполнительным системам органов. Она образована двумя составляющими:

  • костями скелета, обеспечивающими функции опоры для организма (создания каркаса) и защиты внутренних органов от механических повреждений;
  • и поперечно-полосатой мускулатурой, которая приводит в движении кости скелета и делает возможным перемещение человека в пространстве. Кроме того, мускулатура придаёт организму форму, защищает часть внутренних органов. Мимические мышцы изменяют выражение лица, что играет значительную роль в невербальном общении.

Также к опорно-двигательной системе относят структуры, обеспечивающие сочленение костей скелета и прикрепление к ним мышц.

Строение кости

По внешнему строению выделяют несколько видов костей:

Трубчатые кости состоят из двух головок (эпифизов) и тела (диафиза). Внутри тела трубчатых костей находится полость с костным мозгом. Красный костный мозг , он же « деятельный » – это стволовые клетки, из которых появляются новые элементы крови, иммунные клетки. Жёлтый, или «недеятельный» костный мозг представляет собой жировую ткань. Некоторые вредные для организма вещества, например, тяжелые металлы или лекарства, могут накапливаться в нем годами, вызывая хроническую интоксикацию. Различают длинные (плеча, предплечья, бедра и голени) и короткие (пястневые и плюсневые) трубчатые кости.

Плоские кости имеют плоскую форму. Это, например, лопатки, кости черепа, тазовые кости, ребра.

Короткие кости обычно имеют неправильную форму и небольшой размер. Они образуют скелет запястья, предплюсны.

Смешанные кости сочетают в себе элементы нескольких костей. Например, тело позвонка представлено короткой костью, а отростки и дуга – плоской.

Снаружи каждая кость покрыта тонкой живой тканью — надкостницей. Она обильно кровоснабжается, здесь находится много нервов и болевых рецепторов, что делает ушиб кости очень болезненным по сравнению с ушибом мышцы.

Ниже надкостницы расположено плотное (компактное) вещество кости, очень плотный твёрдый слой, образующий наружный каркас. Кнутри от него находится рыхлое губчатое вещество. Оно менее прочно, зато и весит гораздо меньше.

В месте соединения двух костей контактирующие поверхности покрыты хрящевыми пластинами. Хрящ упругий (то есть может незначительно сжиматься при увеличении нагрузки) и гладкий, благодаря чему кости не стираются от трения.

Костная ткань

Костная ткань относится к соединительным тканям, для них характерно преобладание межклеточного вещества над клеточным элементом. Это хорошо видно на микроскопическом уровне.

Кость состоит из двух типов веществ: органического (около 30%, в основном белки и углеводы) и неорганического (около 60 %, в основном соли кальция и магния, фосфаты); оставшиеся 10% составляет вода. Неорганическая часть придает костям твердость, но при этом повышает их хрупкость. Если кость прокалить, в ней останутся только минеральные соли и она будет легко ломаться. Органическое вещество более эластичное, если кость обработать кислотой, минеральные вещества растворятся и останется только гибкий коллагеновый остов, который может сгибаться, не ломаясь.

У детей преобладает содержание органического вещества, поэтому кости у них более эластичные и упругие. С возрастом повышается доля минеральных веществ и кости становятся менее упругими, но более прочными. При старении происходит гормональная перестройка организма, снижается число костных балок в губчатом веществе, основное вещество теряет воду, а минеральные составляющие вымываются, кости становятся хрупкими и легко ломаются. Эти явления называются остеопорозом.

Строительные клетки, остеобласты, создают вокруг себя каркас из минеральных веществ, преимущественно кальция. Единица строения кости называется остеоном.

Остеобласты активны не только в период роста организма, они работают на протяжении всей жизни человека. Кости постоянно обновляются и перестраиваются. Для этого нужно не только создать новые элементы каркаса, но и уничтожить старые или поврежденные участки. Этим занимаются остеокласты – клетки, разрушающие костную ткань.

Совместная работа остеокластов и остеобластов обеспечивает сращение переломов и реакцию кости на изменение привычной нагрузки. Например, если человек перестает ходить на несколько месяцев, вертикальная нагрузка на кости ног, которую давал вес тела, значительно снижается. Костные балки компактного вещества при этом перестраиваются, приспосабливаясь к отсутствию прежних действующих сил. При попытке снова начать ходить кости могут сломаться, не выдержав вес тела. Подобное происходит с космонавтами после длительных полетов.

Кровеносные сосуды и нервы, проходящие в кости.

На рисунке можно видеть кровеносные сосуды и нервы, проходящие в кости. Цилиндрические структуры вокруг них – остеоны. Они образуются клетками кости (изображены в виде розовых овальных тел с отростками).

Лейкоциты в отличие от других форменных элементов крови способны. Лейкоциты в крови

Лейкоциты
или белые кровяные клетки, это форменные элементы крови, главная функция
которых является защитная. Они играют основную роль в защите организма от
патогенных агентов. В отличие от других форменных элементов лейкоциты
отличаются своей уникальной особенностью. Именно они способны к активному
движению.

Они способны выходить через стенку кровеносного сосуда в
ткань. Норма лейкоцитов у мужчин 4,0-8,8 х 109/л, норма лейкоцитов у
женщин  4,0-8,8 х 109/ л.

Существуют различные формы лейкоцитов. Все формы лейкоцитов
учитываются в анализе крови, что называется лейкоцитарной формулой.

Повышенные лейкоциты

Повышенные
лейкоциты или лейкоцитоз обнаруживается при самых различных инфекционных
заболеваниях. Это второй основной признак после повышения СОЭ, который
характеризует наличие воспалительного или инфекционного заболевания. Повышенные
лейкоциты возникают при аппендиците, плеврите, пневмонии, отите, панкреатите,
перитоните, абсцессе и т. д. Также лейкоцитоз выявляется при значительных по
площади ожогах или после значительных кровопотерь, а также при инфаркте.

Существует
также физиологический лейкоцитоз, который возникает через 2 ч. после еды, во
время беременности, после физических и эмоциональных нагрузок и перед
менструацией. Его характеризует умеренность повышения.

Пониженные лейкоциты

Пониженные
лейкоциты – лейкопения, наблюдаются при недостаточном образовании лейкоцитов.
Лейкопения встречается при туберкулёзе, ВИЧ, синдроме гиперспленизма, лимфогранулёматозе,
апластических состояниях костного мозга и др.

Из правого желудочка сердца кровь попадает в. Историческая справка

Ещё исследователи далёкой древности предполагали, что в живых организмах все органы функционально связаны и оказывают влияние друг на друга. Высказывались самые различные предположения. Ещё Гиппократ  — отец медицины, и Аристотель  — крупнейший греческий мыслитель, жившие почти 2500 лет назад, интересовались вопросами кровообращения и изучали его. Однако их представления были не совершенны и во многих случаях ошибочны. Венозные и артериальные кровеносные сосуды они представляли как две самостоятельные системы, не соединённые между собой. Считалось, что кровь движется только по венам, в артериях же находится воздух. Это обосновывали тем, что при вскрытии трупов людей и животных в венах кровь была, а артерии были пустые, без крови.

Это убеждение было опровергнуто в результате трудов римского исследователя и врача Клавдия Галена (130—200). Он экспериментально доказал, что кровь движется сердцем и по артериям, и по венам.

После Галена вплоть до XVII века считали, что кровь из правого предсердия попадает в левое каким-то образом через перегородку.

В 1628 году английский физиолог, анатом и врач Уильям Гарвей (1578—1657 г.) опубликовал свой труд «Анатомическое исследование о движении сердца и крови у животных», в котором впервыев истории медицины экспериментально показал, что кровь движется от желудочков сердца по артериям и возвращается к предсердиям по венам. Несомненно, обстоятельством, которое более других привело Уильяма Гарвея к осознанию того, что кровь циркулирует, явилось наличие в венах клапанов, функционирование которых есть пассивный гидродинамический процесс. Он понял, что это могло бы иметь смысл только в том случае, если кровь в венах течёт к сердцу, а не от него, как предположил Гален и как полагала европейская медицина до времён Гарвея . Гарвей был также первым, кто количественно оценил сердечный выброс у человека, и преимущественно благодаря этому, несмотря на огромную недооценку (1020,6 г, то есть около 1 л/мин вместо 5 л/мин), скептики убедились, что артериальная кровь не может непрерывно создаваться в печени , и, следовательно, она должна циркулировать. Таким образом, им была построена современная схема кровообращения человека и других млекопитающих, включающая два круга (см. ниже). Невыясненным оставался вопрос о том, как кровь попадает из артерий в вены.

Источник