Развитие позвоночника в эмбриогенезе

Развитие позвоночника в эмбриогенезе thumbnail

Позвоночник и спинной мозг предназначены для обеспечения движений, поддержания структурной целостности и вертикального положения, передачи сигнала от головного мозга и согласования моторных, сенсорных и вегетативных путей. Позвоночник и спинной мозг состоят из нескольких различных типов тканей, ответственных за эти различные функции. Эмбриологическое развитие человеческого позвоночника и спинного мозга является сложным процессом, приводящим к формированию сложноустроенных структур. Несмотря на огромные продвижения в молекулярных и биологических методах после многих десятилетий, сделавших доступными современного исследования, эмбриологическое развитие позвоночника и нервной системы остается не полностью понятным. Сложный каскад сигнальных событий на молекулярном уровне участвует в развитии позвоночных и нервных элементов. Изменения в этих важных этапах могут привести к отклонениям и аномалиям развития, некоторые из которых могут угрожать целостности и функции этих структур при развитии человека, что потенциально приведет к неврологической дисфункции или увеличенной восприимчивости нервных структур к травме.

Ранний эмбриональный период позвоночника

Формирование позвоночного столба, а также тела в целом, начинается во время периода гаструляции, при котором биламинарный эмбриональный диск преобразовывается в триламинарный эмбриональный диск. Этот процесс встречается в начале третьей недели после оплодотворения и характеризуется инвагинацией эктодермальных клеток через первичную борозду первичной полоски, создавая эмбриональную мезодерму. Концентрация инвагинированных внутриэмбриональных клеток мезодермы в краниальном конце первичной полоски формирует первичную ямку или узел. Непрерывно окутывающие клетки в первичном узле формируют канал, называемый хондриальной трубкой, которая непрерывна с амниотической полостью. Эти инвагинирующиеся клетки двигаются в краниальном направлении, они свойственны эмбриональной эндодерме, и формируют хондральную пластину, которая впоследствии превращается в хорду. Мигрирующими клетками, которые формируют хорду, управляют с помощью хемотаксиса фактор роста фибробластов 4 и фактор роста фибробластов 8. Наличие хорды побуждает лежащие эктодермальные клетки распространяться вширь, чтобы сформировать нервную пластину. Примерно на 19 день эта нейроэктодермальная ткань свернется, чтобы сформировать нервную борозду, которая впоследствии закроется, чтобы стать нервной трубкой. Хорда также играет одну из основных ролей в эмбриональном развитии в качестве координирования созревания позвоночного столба. 

Инвагинирующиеся клетки, которые мигрировали латерально, дифференцируются в три главных области: параксиальная, промежуточная и боковая мезодермальные пластины. Эти мезодермальные предшественники будут развиваться, чтобы сформировать позвоночник, мочеполовую систему и трубку пищеварительного тракта, соответственно. Эти близкие пространственные отношения могут быть причиной проявления аномалий развития позвоночника, происходящих при мочеполовых нарушениях. Параксиальная мезодерма развивается в 42 – 44 пар сомитов в течение нескольких дней. Сомиты развиваются от краниального к каудальному концу и их число может служить оценкой эмбрионального возраста. Эти структуры являются, возможно, самым очевидным примером эмбриологического понятия метамер, в которых многократные анатомически подобные единицы устроены линейно, чтобы сформировать сложную структуру или орган. Каждый отдельный сегмент далее дифференцируется в две крупнейших области. Дорсолатеральная область сегмента, составленного из дерматомов и миотомов зреет, чтобы в конечном счете сформировать мускулатуру спины и поверхность кожи, соответственно. Вентромедиальная область, склеротомы сомитов являются предшественниками позвоночного столба развивающегося человека. Нервная трубка дифференцируется, чтобы сформировать спинной мозг.

Развитие позвоночного столба

В то время как гестация продолжается, на 4-ой и 5-ой неделе происходит формирование отдельных тел позвонков из метамерных сегментов. Этот процесс лучше всего объяснен теорией пересегментации, в которой каждый склеротом делится на ростральную и каудальную половины. Каждый позвонок фомируется из каудальной половины одного склеротома и краниальной половины смежного склеротома. Слияние этих двух склеротомов формирует центр, который станет отдельным телом позвонка . Каждый сформированный позвонок сопровождают сегментальные артерии и нервы. Теория пересегментации была доказана экспериментально в моделях. Шаблон позвонка во время пересегментации контролируется влиянием генов HOX и Pax. Ранее было предположено, что хорда может играть роль в координировании процесса ресегментации. Cмежные с нервной трубкой мезодермальные клетки развиваются в дужки, пластинчатые части и ножки, которые служат для защиты структур, проходящих через позвоночный канал.

Хорда является центральной осью для недавно сформированного центра и в конечном счете распадается между позвонками (процесс хондрогенеза), в области межпозвоночного диска она способствует формированию пульпозного ядра. Клетки склеротомов распространяются, чтобы сформировать окружающее фиброзное кольцо. В течение 6-ой недели молекулярные факторы от хорды и нервной трубки сигнализируют об инициировании процесса хондрогенеза. Два центра хондрогенеза в центре формируют единый большой сегмент хряща. На каждой дужке позвонка расположено по одному центру хондрогенеза, которые впоследствии растут, чтобы соединиться с противоположной частью дужки. Окостенение этих хрящевых предшественников начинается на 9-ой неделе развития. Три точки окостенения могут быть найдены в каждом позвонке, одна расположена в центре и одна в каждой половине дужки позвонка. Окостенение начинается в нижне-грудном отделе позвоночника и идет от этой точки краниально и каудально. Этот медленный процесс продолжается после рождения, потому что половинки дужек позвонков не полностью соединяются приблизительно до возраста 6 лет.

Читайте также:  U все для позвоночника

Развитие спинного мозга

Как уже сказано, нервная система развивается из растущей вширь эктодермальной нервной пластины, которая формируется над хордой. В то время как продолжается быстрый рост, края нервной пластины складываются и в конечном счете соединяются, чтобы сформировать нервную трубку. При нарушении закрытия нервной трубки образуется врожденный дефект, который называется миеломенингоцеле. Около 5 недели эмбрионального развития в пределах нервной трубки возникают спинные и брюшные пары утолщений крыловидной и базальной пластинкок. Эти утолщения отделены структурно пограничной бороздой и в конечном счете станут сенсорными и моторными трактами. Пограничная борозда исчезает в течение 6 недели из-за непрерывного быстрого увеличения. Ранее разделенные структуры, однако, сохраняют свои соответствующие функции. Задние и передние рога спинного мозга появляются в процессе эмбрионального роста, тракты белого вещества начинают появиться на 7-ой или 8-ой неделе.


Созревание позвоночника в детстве и юности

Медленный рост позвоночника в детстве и юности обеспечивает механическую ось для всего аксиального скелета, а также обеспечивает безопасность спинного мозга и нервных корешков. Окостенение позвоночника продолжается после рождения от трех основных точек окостенения, состоящих из центра и позвоночных дуг. Интересно, что люди непохожи на большинство других позвоночных животных, у которых не центр окостенения формирует истинную замыкательную пластину, а скорее тонкая хондроэпифизиальная область в замыкательных пластинах, которая также способствует периферическому росту. Пара нейроцентральных синхондрозов возле присоединения ножек к телу позвонка и единственный задний синхондроз на вершине дуги обеспечивают рост позвоночника и расширение позвоночного канала. Эти синхондрозы легко визуализируются на обычных рентгенограммах как просветления и не должны приниматься за перелом или порок развития. Позвоночный канал достигает своего взрослого диаметра в возрасте 6 – 8 лет после закрытия нейроцентральных синхондрозов. Раннее закрытие или асимметричный рост этих синхондрозов могут привести к развитию врожденного стеноза позвоночного канала или сколиоза.

Центры окостенения: 1 – грудной позвонок до рождения и в пубертатный период (2); 3 – атлант; 4 – эпистрофей; 5 – поясничный позвонок; 6 – крестец новорожденного (спереди) и 4-летнего ребенка (сверху) (7).
На рисунке обозначено время окостенения

Первоначально у новорожденного полностью кифотизированный позвоночник. Это основное искривление остается в грудной области после развития вторичных искривлений при росте ребенка. Шейный лордоз развивается, когда задние мышцы шейного отдела позвоночника набирают силу и увеличиваются в объеме из-за того, что ребенок начинает поднимать голову вертикально. Поясничный лордоз развивается позже при созревании, поскольку ребенок начинает сидеть, стоять и ходить, и полностью стабилизируется после половой зрелости. Вторичные точки окостенения появляются в каждом позвонке в начале юности и расположены в концах остистых, поперечных и суставных отростков, а так же в апофизах тел позвонков. Как и основные точки окостенения, эти структуры могут визуализироваться рентгенографически и должны учитываться во время оценки травматического повреждения. Нужно также отметить, что неполная окостенелость позвоночника привносит существенные различия в сигнале МРТ. Рост в местах окостенения происходит в течение молодого возраста с закрытием зон роста в возрасте примерно 25 лет. После прекращения роста верхние и нижние апофизы становятся жесткими, для формирования края тела позвонка к которому прикрепляется межпозвоночный диск.

Источник:

Ссылки по теме:

Источник

Формирование позвонков эмбриона. Этапы развития позвонков различных отделов у плода

Медиально, по направлению к хорде, из склеротомов начинает пролиферировать мезенхимная ткань, которая затем покрывает хорду со всех сторон . Из этой области формируется закладка тела позвонка (corpus vertebrae). При этом располагающиеся рядом зачатки тел позвонков разделяются между собой упомянутыми закладками межпозвонковых пластинок.

Читайте также:  Уколы в позвоночник где сделать

Через середину закладок тел позвонков и межпозвонковых пластинок проходит спинная хорда, которая в области позвонковых тел со временем полностью дегенерирует, а в межпозвонковых пластинках от нее сохраняется рудимент в виде малого очага мукоидной ткани (nucleus pulposus — мякотного ядра).

По обеим сторонам медуллярной трубки из сгущенной краниальной половины склеротома в дорсальном направлении движется поток мезенхимной ткани, давая начало образованию закладок дуги позвонков (arcus vertebrae), которые впоследствии (приблизительно на четвертом месяце развития) замыкаются дорсально, по средней линии; в связи с этим, развивающийся мозг оказывается заключенным в сгущенную мезенхиму позвоночной закладки.

Из дуги позвонка затем вырастает остистый отросток (processus spinosus) и поперечный отросток (processus transversi). Наконец, из мезенхимы склеротомной закладки позвонков в вентролатеральном направлении вырастают мезенхимные тяжи, представляющие собой закладки реберных отростков (processus costales), то есть будущих ребер.

развитие позвонков плода

Сначала эта закладка позвонка представлена сгущенной мезенхимной бластемой склеротома. В течение седьмой недели из нее развивается хрящ, а позвонки приобретают плотную консистенцию с более точными контурами своей будущей формы. Наконец, начиная с десятой недели, наступает процесс хондрогенного окостенения (остеофикации). который исходит из нескольких центров окостенения.

Один из этих центров появляется в хрящевом теле позвонка (лишь в редких случаях наблюдается возникновение двух таких центров), а в каждой дуге позвонка по его обеим сторонам образуется по одному центру. Таким образом, позвонки возникают в результате окостенения, начинающегося из трех первичных центров; при этом сначала возникают три самостоятельные (вернее связанные только хрящем) косточки, которые лишь позднее, через несколько лет после рождения, сливаются в единый костный позвонок.

При окостенении сначала происходит энхондральная остеофикация, к которой позже, начиная от перихондра, присоединяется также перихондральныи вид окостенения. На данной стадии развития верхние и нижние поверхности тел позвонков еще покрыты гиалиновой хрящевой пластинкой, окостеневающей приблизительно к семнадцати годам и окончательно присоединяющейся к телу позвонков в среднем лишь на двадцатом году жизни.

Тело первого шейного позвонка, атланта (atlas), теряет связь с дугами и срастается с телом второго шейного позвонка (epistropheus), превращаясь при этом в его зубовидный отросток (dens epistrophei). Обе дуги первого шейного позвонка вентрально и дорсально соединяются, благодаря чему атлант приобретает форму кольца.

У крестцовых и копчиковых позвонков реберные отростки, идущие латерально, редуцированы, причем они особенно недоразвиты у копчиковых позвонков, у которых являются рудиментарными уже с самого начала. В крестцовой области тела позвонков в период полового созревания вторично срастаются в единую кость — крестец (os sacrum), причем окостенение захватывает также и межпозвонковые пластинки. Однако окончательное костное соединение крестцовых позвонков заканчивается приблизительно лишь на двадцать пятом году жизни. Боковые отделы крестцовой кости возникают в результате соединения рудиментарных зачатков крестцовых ребер.

Копчиковые позвонки также могут вторично срастаться, образуя более или менее единую копчиковую кость (os coccygis). На наружной поверхности тела в коже копчиковой области имеется умеренно углубленная ямка, копчиковая ямка (fovea coccygea), которая соответствует месту, где произошла дегенерация последних копчиковых позвонков и остатка хвоста.

– Также рекомендуем “Позвоночный столб плода. Развитие ребер у эмбриона”

Оглавление темы “Развитие половых органов и скелета плода”:

1. Формирование влагалища. Опущение половых желез

2. Образование оболочек яичка. Формирование семявыносящего протока

3. Формирование наружных половых органов. Развитие мужских половых органов

4. Формирование наружных женских половых органов. Аномалии женских половых органов

5. Добавочные половые железы. Развитие скелета и мышц плода

6. Этапы развития скелета эмбриона. Осевой скелет плода

7. Формирование позвонков эмбриона. Этапы развития позвонков различных отделов у плода

8. Позвоночный столб плода. Развитие ребер у эмбриона

9. Череп плода. Формирование черепа эмбриона

10. Примордиальпый череп плода. Развитие основания черепа эмбриона

Источник

Позвонки эмбриона. Развитие ребер и позвонков плода

Развитие позвонков и ребер представляет особый интерес из-за той важной роли, которую они играют в скелете, и в связи с характерным способом их формирования. В процессе их роста хорошо видны образование отдельных центров окостенения в первичной хрящевой массе и последующее слияние этих центров, приводящее к формированию единого костного элемента.

Читайте также:  Мануальная терапия позвоночника казань

При изучении ранних эмбрионов мы проследили ход развития сомитов. Следует повторить, что из вентро-медиальной поверхности каждого сомита образуется группа мезенхимных клеток, называемая склеротомом. Эти клетки мигрируют с обеих сторон к средней линни и скапливаются вокруг хорды. В дальнейшем из них развиваются позвонки.

Сначала в этих первичных массах обнаруживается скучивание клеток склеротома, происходящих из двух прилегающих сомитов, в группы, расположенные в интервалах между миотомами. При изучении серий поперечных срезов эти группы легко проглядеть, если при переходе от среза к срезу не отмечать плотность распределения клеток. Они, однако, очень хорошо видны на фронтальных срезах. Каждая из этих групп клеток является зачатком тела позвонка.

Сформировавшись, они быстро становятся более плотными и ясно очерченными. Вскоре после формирования центра из него начинают распространяться в дорзальную и латеральную стороны скопления клеток мезенхимы, образующих зачатки нервных дужек и ребер.

позвонки эмбриона

Стадию, на которой появляются в виде мезенхимных закладок наиболее рано формирующиеся части скелета, часто называют бластемной стадией. Эта стадия быстро сменяется хрящевой стадией. При развитии позвоночника образование хряща из бластемной массы впервые начинается в области тела позвонка, а затем центры хондрофикации возникают в нейральных и реберных отростках. Эти центры быстро увеличиваются в объеме, пока не срастутся друг с другом и вся масса не станет хрящом.

Образовавшийся таким образом хрящевой позвонок является вначале единым целым, без линий демаркации между местами, где слились центры образования хряща, и без следов разделения на отдельные части, которые образуются впоследствии при замещении хряща костью. К началу окостенения хрящевые ребра отделяются от позвонков, но сами позвонки еще остаются не разделенными на части.

Расположение центров эндохондрального окостенения в хряще позвонка схематически изображено на рисунке. Легко видеть, как увеличивающиеся в объеме центры окостенения ведут к образованию окончательно сформированного позвонка. Срединный центр окостенения дает начало телу позвонка. Центры, находящиеся в нейральных отростках, распространяются дорзально, образуя пластинки и всю нервную дужку. Остистый отросток возникает в результате распространения этих центров от точки их встречи в дорзальную сторону.

Поперечные отростки, с которыми сочленяются бугорки ребер, образуются путем латерального распространения центров окостенения, появляющихся в нейральных отростках. Вентрально эти центры срастаются с телом позвонка. Ребро формируется в результате распространения процесса окостенения из его центра. После рождения в бугорке и головке ребра появляются вторичные эпифизарные центры. В течение периода роста они остаются отделенными от остальной части ребра хрящевыми пластинками так же, как это описывалось при рассмотрении развития длинных костей. Срастания этих вторичных эпифизарных центров с остальной частью ребра не происходит до тех пор, пока скелет не достигнет своих окончательных размеров.

Все сказанное выше касается грудных позвонков, где отношение ребра к позвонку выражено наиболее отчетливо. Реберный элемент представлен в каждом позвонке, но в других участках позвоночника он сильно редуцирован и изменен. На рисунке, где схематически изображены компоненты шейных, грудных, поясничных и крестцовых позвонков, эта гомология отчетливо видна. Все позвонки образуются в результате процесса, совершенно аналогичного вышеописанному процессу образования грудного позвонка.

В связи с наличием редуцированных реберных компонентов у шейных позвонков не удивительно, что появление хорошо развитого шейного ребра, соединенного с самым нижним шейным позвонком, является довольно часто встречающейся аномалией скелета. Таким же образом может возникнуть добавочное ребро, связанное с первым поясничным позвонком. Труднее объяснить причины раздвоения ребра в месте его сочленения с грудиной.

– Вернуться в оглавление раздела “Акушерство.”

Оглавление темы “Развитие хрящей и костей эмбриона”:

1. Аномалии развития покровов тела. Полимастия и полителия

2. Соединительная ткань эмбриона. Волокнисто-эластическая соединительная ткань плода

3. Жировая ткань эмбриона. Образование хряща у плода

4. Гистогенез кости эмбриона. Перепончатые кости плода

5. Отложение солей кальция у эмбриона. Пластинки и трабекулы костей плода

6. Образование губчатой кости у эмбриона. Возникновение эндохондральной кости плода

7. Компактная кость у эмбриона. Развитие скелета плода

8. Длинные кости плода. Развитие длинных костей у эмбриона

9. Развитие суставов плода. Формирование суставов эмбриона

10. Позвонки эмбриона. Развитие ребер и позвонков плода

Источник